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Abstract— We present a method for guaranteeing the safety
of online learning schemes. The method uses barrier certificates
and Sums-of-Squares programming to find a safe region of
state space and a controller which renders that space positively
invariant. This safe set and controller are then used to create
”training wheels”, which can be added to any controller to
create a guaranteed safe controller. These training wheels alter
the given controller only when the state approaches the edge
of the guaranteed safe region in state space. Thus, except for
where it would otherwise lead to falling, the original controller
remains unchanged. For a given learning scheme, this projection
is performed for each controller rollout to generate a safety
guarantee for the scheme with minimal interference. We present
simulation results for a simple car model and a simple hopping
model, and plan to demonstrate safe learning of a walking
controller for a compass gait walker.

I. INTRODUCTION

Online learning is a valuable tool for achieving high
performance behaviour in physical systems when modelling
accuracy is limited. This is particularly true for legged
robots since it is inherently difficult to accurately model
contact events. However, such learning schemes can be
particularly challenging for legged robots due to the high cost
of falling (which can require lengthy hardware repairs). As
such, successful learning implementations on walking robots
have been largely limited to hardware in which either the
likelihood or the cost of falling is low [1], [2].

One way to mitigate the risk of falling is to determine the
space of ”safe” controllers and states. That is, the space of
initial conditions and control inputs which avoid failure states
for all time. Once found, we can restrict a given learning
scheme to search for controllers within this space.

In this work, we present a method to compute the set of
safe states using polynomial barrier functions. We use this
set to compute a mask that can take any unsafe controller
and render it safe with minimal modification. This approach
is similar to that in [3], in which barrier functions are used
to guarantee the safety of Lyapunov-based controllers.

At this time, we have implemented the method on a simple
car model and a simple hopper model. By the time of the
conference, we intend to use this approach to safely learn a
hopping controller on hardware for the robot RAMone[4].

II. METHODS

The class of systems we consider in this paper are those
with dynamics of the form:

ẋ = f(x) + gu(x)u+ gd(x)d. (1)

Where f , gu and gd are polynomials in x, u ∈ U is the
control input, which takes values from the bounded set U ,

and d ∈ D is the uncontrolled, time varying disturbance
input which takes values from the bounded set D.

A. Safe Set Computation

We begin by defining the set of safe states:

Xs = {x0 | ∃u(x) ∈ U s.t. x(x0,u(x),d(t), τ) /∈ XF

∀τ ∈ [0,∞),∀d(t) ∈ D}.
(2)

Where Xf are the failure states, and the notation
x(x0,u(x),d(t), τ) represents the flow forward of the state
x0 under state feedback controller u(x) and disturbance
signal d(t) after time τ . This can be seen as the largest
forward control invariant set [3] that doesn’t include the
failure states.

To find Xs, we use a barrier function approach similar to
that in [5], to define the following optimization problem:

max
v,us

∫
v(x)

s.t. v(x) ≤ 1 ∀x ∈ X, v(x) < 0 ∀x ∈ Xf

v̇(x,us(x),d) > 0 ∀x ∈ {x|v(x) = 0},∀d ∈ D
−1 ≤ us(x) ≤ 1 ∀x ∈ X

(3)

This is an infinite dimensional bilinear program that can
be approximated as a bilinear matrix inequality using poly-
nomial basis functions and Sums-of-Squares. To solve this
problem, we use an alternation approach similar to [5].

Once this problem is solved, an inner approximation of the
safe set is given by Xs = {x|v(x) ≥ 0}, and a controller
that keeps states within this set is given by us(x).

B. Control Masking

Note that the only requirement for forward invariance of
the set Xs is that the flow of the system is inward on the
boundary of Xs. This means that any controller will be safe
so long as it enforces this flow condition on the edge of
the safe set. Thus we define a safety mask that modifies
controllers only in the neighborhood of v(x) = 0.

Since a controller that is discontinuous on the boundary
of the safe set would pose difficulties for systems with
finite bandwidth, we additionally must ensure that the new
controller is continuous near the boundary.

To define the mask, we smoothly interpolate between the
initial controller and the controller u(i)

s (x), which we know
satisfies the safety condition at the boundary (see Fig. 1).
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Fig. 1: Scaling weights of the unmasked controller u0 and
the ”training wheels” controller us. The weights satisfy w0+
ws = 1 and are used to form the masked controller um =
w0u0 + wsus.

(a) Dubin’s car. (b) 1d hopper.
Fig. 2: Simple models for demonstrating control masking.
The Dubin’s car has state [y, θ]T and steering angle input φ.
The hopper is a hybrid model with state [y, ẏ]T , force input
F > 0, and a guard at {y = 0.5m, ẏ > 0m/s} (foot liftoff).
At this guard, the velocity is reflected about ẏ = 0m/s.

C. Safe Online Learning

Once this safety mask has been computed, the result can
be applied in real-time to arbitrary control input. Simply
monitor the state until it approaches the boundary of Xs,
then follow the interpolation scheme to determine the safe
input. As such, this approach can be used as a last step in
any learning scheme to ensure that any controller used on
the hardware is safe.

To ensure that safety is maintained despite modelling er-
rors, the disturbance bounds must be large enough to capture
all observed differences between model and hardware.

III. PRELIMINARY RESULTS

At the time of this abstract, we have successfully imple-
mented this method on a Dubin’s car, and a hybrid extension
of this method on a 1-dimensional hopper (see Fig. 2).

The safe set and the result of the control masking are
shown for the Dubin’s car in Fig. 3 and for the hopper in
figure Fig. 4.

IV. FUTURE WORK

The next goal of this project is to increase the complexity
of the example models. To this end, we are working on
implementations for a 5 dimensional car model and for a
compass gait walker.

Additionally, we are interested in demonstrating the
method on hardware using a small remote control car.
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Fig. 3: Control masking for the Dubin’s car model. Shown in
solid red are trajectories generated by a randomly generated
controller. In dashed blue, we show the trajectories from
the masked controller. In the dark green region (where
v(x) > vm), the original controller is unaltered, so the two
trajectories coincide. In the light green region (0 ≤ v(x) ≤
vm), we modify the original controller to keep the masked
trajectories from failing. The green regions together represent
the set of safe states Xs.
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Fig. 4: Control masking for the 1d hopper model. Failure
occurs when the body height goes below 0.25m or when
the hopper fails to leave the ground.
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